1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
using UnityEngine; using UnityEditor;
public static class SphericalHarmonicsCoefficient { public static void sphericalHarmonicsFromCubemap9(Cubemap cubeTexture, ref Vector3[] output) { float[] resultR = new float[9]; float[] resultG = new float[9]; float[] resultB = new float[9];
float fWt = 0.0f; for (uint i = 0; i < 9; i++) { resultR[i] = 0; resultG[i] = 0; resultB[i] = 0; }
float[] shBuff = new float[9]; float[] shBuffB = new float[9];
for (int face = 0; face < 6; face++) { float invWidth = 1.0f / cubeTexture.width; float negativeBound = -1.0f + invWidth; float invWidthBy2 = 2.0f / cubeTexture.width;
Color[] data = cubeTexture.GetPixels((CubemapFace)face);
for (int y = 0; y < cubeTexture.width; y++) { float fV = negativeBound + y * invWidthBy2;
for (int x = 0; x < cubeTexture.width; x++) { float fU = negativeBound + x * invWidthBy2;
Vector3 dir;
switch ((CubemapFace)face) { case CubemapFace.PositiveX: dir.x = 1.0f; dir.y = 1.0f - (invWidthBy2 * y + invWidth); dir.z = 1.0f - (invWidthBy2 * x + invWidth); break; case CubemapFace.NegativeX: dir.x = -1.0f; dir.y = 1.0f - (invWidthBy2 * y + invWidth); dir.z = -1.0f + (invWidthBy2 * x + invWidth); break; case CubemapFace.PositiveY: dir.x = -1.0f + (invWidthBy2 * x + invWidth); dir.y = 1.0f; dir.z = -1.0f + (invWidthBy2 * y + invWidth); break; case CubemapFace.NegativeY: dir.x = -1.0f + (invWidthBy2 * x + invWidth); dir.y = -1.0f; dir.z = 1.0f - (invWidthBy2 * y + invWidth); break; case CubemapFace.PositiveZ: dir.x = -1.0f + (invWidthBy2 * x + invWidth); dir.y = 1.0f - (invWidthBy2 * y + invWidth); dir.z = 1.0f; break; case CubemapFace.NegativeZ: dir.x = 1.0f - (invWidthBy2 * x + invWidth); dir.y = 1.0f - (invWidthBy2 * y + invWidth); dir.z = -1.0f; break; default: return; }
dir = dir.normalized;
float fDiffSolid = 4.0f / ((1.0f + fU * fU + fV * fV) * Mathf.Sqrt(1.0f + fU * fU + fV * fV)); fWt += fDiffSolid;
sphericalHarmonicsEvaluateDirection9(ref shBuff, dir);
int pixOffsetIndex = x + y * cubeTexture.width; Vector3 clr= new Vector3(data[pixOffsetIndex].r, data[pixOffsetIndex].g, data[pixOffsetIndex].b); if (PlayerSettings.colorSpace == ColorSpace.Gamma) { clr.x = Mathf.GammaToLinearSpace(clr.x); clr.y = Mathf.GammaToLinearSpace(clr.y); clr.z = Mathf.GammaToLinearSpace(clr.z); } sphericalHarmonicsScale9(ref shBuffB, shBuff, clr.x * fDiffSolid); sphericalHarmonicsAdd9(ref resultR, resultR, shBuffB); sphericalHarmonicsScale9(ref shBuffB, shBuff, clr.y * fDiffSolid); sphericalHarmonicsAdd9(ref resultG, resultG, shBuffB); sphericalHarmonicsScale9(ref shBuffB, shBuff, clr.z * fDiffSolid); sphericalHarmonicsAdd9(ref resultB, resultB, shBuffB); } } }
float fNormProj = (4.0f * Mathf.PI) / fWt; sphericalHarmonicsScale9(ref resultR, resultR, fNormProj); sphericalHarmonicsScale9(ref resultG, resultG, fNormProj); sphericalHarmonicsScale9(ref resultB, resultB, fNormProj);
for (uint i = 0; i < 9; i++) { output[i].x = resultR[i]; output[i].y = resultG[i]; output[i].z = resultB[i]; } }
private static Vector3 DecodeHDR(Color clr) { return new Vector3(clr.r, clr.g, clr.b) * clr.a; }
private static void sphericalHarmonicsEvaluateDirection9(ref float[] outsh, Vector3 dir) { const float kInv2SqrtPI = 0.28209479177387814347403972578039f; const float kSqrt3Div2SqrtPI = 0.48860251190291992158638462283835f; const float kSqrt15Div2SqrtPI = 1.0925484305920790705433857058027f; const float k3Sqrt5Div4SqrtPI = 0.94617469575756001809268107088713f; const float kSqrt15Div4SqrtPI = 0.54627421529603953527169285290135f; const float kOneThird = 0.3333333333333333333333f; outsh[0] = kInv2SqrtPI; outsh[1] = -dir.y * kSqrt3Div2SqrtPI; outsh[2] = dir.z * kSqrt3Div2SqrtPI; outsh[3] = -dir.x * kSqrt3Div2SqrtPI; outsh[4] = dir.x * dir.y * kSqrt15Div2SqrtPI; outsh[5] = -dir.y * dir.z * kSqrt15Div2SqrtPI; outsh[6] = (dir.z * dir.z - kOneThird) * k3Sqrt5Div4SqrtPI; outsh[7] = -dir.x * dir.z * kSqrt15Div2SqrtPI; outsh[8] = (dir.x * dir.x - dir.y * dir.y) * kSqrt15Div4SqrtPI; }
private static void sphericalHarmonicsAdd9(ref float[] result, float[] inputA, float[] inputB) { for (int i = 0; i < 9; i++) { result[i] = inputA[i] + inputB[i]; } }
private static void sphericalHarmonicsScale9(ref float[] result, float[] input, float scale) { for (int i = 0; i < 9; i++) { result[i] = input[i] * scale; } }
public static readonly float s_fSqrtPI = Mathf.Sqrt(Mathf.PI); public static readonly float fC0 = 1.0f / (2.0f * s_fSqrtPI); public static readonly float fC1 = Mathf.Sqrt(3.0f) / (3.0f * s_fSqrtPI); public static readonly float fC2 = Mathf.Sqrt(15.0f) / (8.0f * s_fSqrtPI); public static readonly float fC3 = Mathf.Sqrt(5.0f) / (16.0f * s_fSqrtPI); public static readonly float fC4 = 0.5f * fC2; public static void ConvertSHConstants(Vector3[] sh, ref Vector4[] SHArBrC) { int iC; for (iC = 0; iC < 3; iC++) { SHArBrC[iC].x = -fC1 * sh[3][iC]; SHArBrC[iC].y = -fC1 * sh[1][iC]; SHArBrC[iC].z = fC1 * sh[2][iC]; SHArBrC[iC].w = fC0 * sh[0][iC] - fC3 * sh[6][iC]; }
for (iC = 0; iC < 3; iC++) { SHArBrC[iC + 3].x = fC2 * sh[4][iC]; SHArBrC[iC + 3].y = -fC2 * sh[5][iC]; SHArBrC[iC + 3].z = 3.0f * fC3 * sh[6][iC]; SHArBrC[iC + 3].w = -fC2 * sh[7][iC]; }
SHArBrC[6].x = fC4 * sh[8][0]; SHArBrC[6].y = fC4 * sh[8][1]; SHArBrC[6].z = fC4 * sh[8][2]; SHArBrC[6].w = 1.0f; } }
|